Compressibility Factors of Nitrogenn-Butane Mixtures in the Gas Phase

R. B. EVANS III¹ AND GEORGE M. WATSON² Agricultural and Mechanical College of Texas, College Station, Tex.

Nitrogen and n-butane are common components of industrial gaseous systems. The literature contains no experimental information on compressibility factors of nitrogen-n-butane mixtures in the gas phase.

The isotherms reported are at 310° , 340° , 370° , and 400° F. for a pressure range extending from 200 to 10,000 pounds per square inch absolute. Compressibility factors are tabulated for pressures at experimental values, and also at rounded values for mixtures of 0.100, 0.300, 0.500, 0.700, and 0.900 mole fraction of n-butane.

The results presented should prove useful in developing means for predicting the behavior of mixtures of hydrocarbons with nitrogen.

Nitrogen and n-butane are common and important components of industrial gaseous mixtures. The volumetric behavior of pure nitrogen has been of interest to numerous investigators (1-5, 11, 16, 17, 19, 20, 24, 25). Tabular and graphical presentations of the compressibility factors of nitrogen, prepared on the basis of the more precise data, are available (12, 23). Compressibility data on pure nbutane are likewise readily found (6, 10, 18, 22), and tabular and graphical summaries have also been prepared (23). Compressibility factors of some gaseous nitrogenhydrocarbon mixtures are similarly found in the literature. Nitrogen-methane mixtures have been investigated by Keyes and Burks (15), and the results have been used as a test for the Beattie-Bridgeman equation of state applied to mixtures (7, 9, 14, 15). Nitrogen-ethane data have been presented by Reamer and others (21). Limited data, obtained in this laboratory, have been reported on gaseous nitrogen-propane mixtures (26). Nitrogen-ethylene mixtures have been studied by Hagenbach and Comings (13).

No previous investigation on the compressibility factors of gaseous nitrogen-n-butane mixtures were found. In the present work, the compressibility factor is defined in the usual manner as the dimensionless ratio of PV/RT.

MATERIALS

Both the nitrogen and the n-butane used were acquired from the Mathieson Co., Joliet, Ill. The nitrogen was of the "pre-purified grade" and the n-butane was of the "instrument grade." According to the manufacturer's specifications, each gas was 99.9% pure.

Mass-spectroscopic analysis showed the nitrogen to conform to specifications. The purity of the n-butane was checked by means of a mass spectrometer, an infrared spectrophotometer, and a Hyd-Robot Podbielniak low temperature distillation column, and by examination of the slope of the curve of specific volume vs. pressure in the two-phase region. The analyses showed absence of detectable amounts of propane, isobutane, and pentanes. Slight traces of air were found present to an extent below quantitative but not qualitative detection. In view of the slight air impurities detected, a loading procedure was devised, so as to enable removal of the air impurity. With the procedure used to prepare the mixtures, the probable purity of the n-butane was not less than 99.9%.

APPARATUS AND PROCEDURE

The design and arrangement of the apparatus used, with the proper adaptations for investigations of mixtures

of nitrogen-n-butane, were based on the detailed descriptions and specifications of Beattie (8) and of Keyes (14). Aside from the loading equipment, the apparatus consisted of an Amagat-type dead-weight pressure gage with its hydraulic oil system, a mercury "U-tube," a calibrated mercury injector or pump kept in a thermostat at 45° C., and an equilibrium bomb of accurately known volume provided with a Stellite-tipped metering valve. The equilibrium bomb was kept in a separate thermostat. All the units were connected by means of high pressure capillary tubing through a manifold with the necessary valves for convenient operation.

The principles involved in measurements of pressure, volume, and temperature of the gases were simple. The fluid mixture under investigation was introduced into the equilibrium bomb. The bomb was held at constant temperature and had connections leading to the mercury injector and to the pressure gage. By injection of the proper amount of mercury into the equilibrium bomb, the gas mixture was compressed until a pressure balance was detected. The temperature was measured by means of a platinum resistance thermometer calibrated by the National Bureau of Standards in conjunction with a Mueller bridge and a high sensitivity galvanometer. The temperature was controlled to -0.05° C, in the high temperature thermostat and to -0.01° C, in the low temperature thermostat. The pressure was measured by means of an Amagat dead-weight gage (26), with calibrated weights and mercury U-tube (8). The pressure could be measured with a precision within 0.03%. The volumes were obtained from the carefully determined volume of the equilibrium bomb and the volumes of mercury injected by the calibrated mercury pump following the method outlined by Beattie (8). "Blank run" corrections (8) for the apparent volume changes of the apparatus with pressure were experimentally determined at all temperatures investigated and were applied as well as all other corrections specified (8). The precision of the volume measurements ranged from within 0.05% at pressures below 1000 pounds per square inch absolute to 0.5% at pressures in the neighborhood of 10,000.

In addition to pressure, volume, and temperature, two additional variables had to be determined; mole fraction and total number of moles of gas in the mixtures, which were measured during the loading procedure. The mass of butane charged was measured gravimetrically. Briefly, the butane was distilled from its storage cylinder into evacuated weighing bombs immersed in liquid nitrogen. Traces of air or nitrogen contamination were removed by successive evacuations of the frozen hydrocarbon. Two distillations and two separate weighings were performed prior to introducing the butane into the equilibrium bomb. Independent weighings showed that the weights could be reproduced to ± 0.1 mg. On this basis, the differences should have been precise to ± 0.2 mg, for charges of butane ranging from 800 to 5000 mg. The molecular weight for butane used in the calculations was 58,121.

The number of moles of nitrogen charged were measured volumetrically after the butane had been charged into the compressibility bomb. For this purpose, a loading bomb placed side by side with the mercury pump and kept at 45° C. in the low temperature thermostat was used. This bomb, however, did not form part of the system during the compressibility measurements and was used only during the loading procedure.

^{1 -} Present address, Stanolind Gas and Oil Co., Stanolind Bldg., Tulsa, Okla.

^{2 -} Present address, Oak Ridge National Laboratory, Oak Ridge, Tenn.

TABLE I. COMPRESSIBILITY FACTORS FOR n-BUTANE-NITROGEN MIXTURES (Experimental data)

Lb/Sa Inch		-	,		Lb./Sq. Inch		7	,	
Abs.	310° F.	340° F.	370 ⁰ F.	400° F.	Abs.	310 ⁰ F.	340° F.	370 ⁰ F.	400 ⁰ F.
	Mixture I.	9.468 mole %	nitrogen		1805.	0.6169	0.6603	0.7028	0.7428
		//			1031	0.6262	0.6661	0 7054	0 7436
405.0	0.7615				1701.	0.0202	0.6001	0 7213	0.7542
400.7	0.7015	0.7010	• •	• •	2210.	0.0550	0.0001	0.7213	0.7342
432.2	0 7001	0.7819	• •		2494.	0.0887	0.7101	0.7440	0.7730
454.1	0.7231	• •		• •	2782.	0.7307	0.7522	0.7753	0.7996
461.9	· •	• •	0.7998		3057.	0.7716	0.7887	0.8077	0.8282
484.2	0,6996	0.7509	0.7888		3362.	0.8177	0.8313	0.8466	0.8633
533.5	0.6586	0.7200	0.7636		3982.	0.9146	0.9219	0.9307	0.9408
582.8	0.6137	0.6882	0.7399		4592	1 011	1.012	1.015	1.020
632.2	0 5653	0.6552	0 7147		5207	1 109	1 104	1 103	1 104
662.2	0.5334	0.6249	0.6087	• •	5207.	1.100	1,107	1 101	1 104
711 7	0.0004	0.0340	0.0707	• •	5825.	1,204	1.197	1,171	1.104
/11./	0.4812	0.5990	0.0/31	• •	6436.	1.299	1.289	1.280	1.2/3
/00.0	0,4283	0.5618	0.6414	• •	7047.	1.393	1.378	1.367	1.356
794.7		0.5423			7666.	1.488	1.469	1,454	1.440
816.1	0.3937	0.5285	0.6197		8282.	1.581	1.559	1.540	1.522
865.6	0.3716	0.4982	0.5954		8854.	1.664	1.640	1.618	1.597
899.1		0.4804			9182	1.716	1.688	1.664	1.641
915.2	0.3601	0.4726	0.5727		9660	1 786	1 756	1 730	1 705
942.8	0 3552	0 4612	0.5605	• •	0044	1 914	1 793	1 754	1 730
008 3	0.000	0 4431	0.0000		7044.	1.014	1.004	1 776	1 750
1017	0.2544	0.4451	0 5220	• •	9997.	1,830	1.004	1.770	1.750
1017.	0.3544	0.4070	0.3330	• •					
1078.	0.3575	0.42/2	0.5152	• •					
1177.	• • •	0.4225	0.4964					•.	
1252,	0.3832	• •		• •		Mixture III, 4	9.74 mole % n	atrogen	
1282.		0.4275	0.4880						
1359.	0.3978	0.4350	0.4873		488 7	0.9215			
1514.	0.4263	0.4552	0.4952		514 4	•.,	0 9322	• •	• •
1651	0 4524	0 4759	0.5098		524.2	0.0154	0.0220	0.0402	• •
1805	0.4815	0.5010	0.5200	• •	534.2	0.9134	0.9209	0.9402	0.0457
1000.	0.4010	0.5010	0.5277	• •	583.0	0.9087	0.9226	0.9350	0.9457
1931.	0,5050	0.5238	0.5465	• •	633.0	0.9000	0.9166	0.9302	0.9423
2210.		0.5/53	0.5931	• •	663.0	0.8956	0.9128	0.9270	0.9391
2494.	0.6155	0.6261	0.6402	• •	712.5	0.8879	0.9069	0.9222	0.9351
2782.		0.6798	0.6890	• •	767.4	0.8808	0.9008	0.9172	0.9310
3057.	0.7242	0.7301	0.7379		816.9	0.8744	0.8955	0.9127	0.9274
3362.	0.7821	0.7857	0.7900		866.4	0.8681	0.6903	0.9085	0.9239
3982.	0.8968	0.8978	0.8957		916.0	0.8622	0.8854	0 9044	0 9205
4592.	1.011	1.007	1.000		043.6	0.0022	0.8827	0.9022	0 0188
5207	1 1 2 3	1 114	1 105	• •	943.0	0.0307	0.0027	0.9022	0.9100
5923	1 234	1 203	1 208	• •	1018.	0.8500	0.8700	0.8900	0,9143
6426	1.207	1.223	1,200	••	1079.	0.8440	0.8/10	0.8924	0.9107
0430,	1.342	1.327	1,307	••	1178.	0.8355	0.8635	0.8863	0.9058
7047.	1.449	1.42/	1.409	• •	1283.	0.8274	0.8567	0.8807	0.9014
7666.	1.550	1.531	1.509	· •	1360.	0.8222	0.8524	0.8772	0.8984
8282.	1,660	1.633	1.604		1514.	0.8145	0.8457	0.8718	0.8942
8854.	1.758	1.727	1.695		1651.	0.8103	0.8420	0.8688	0.8920
9182.	1.813	1.780	1.749		1806	0.8086	0.8404	0.8674	0.8911
9660,	1.892	1.857	1.822		1031	0.8094	0.8408	0.8678	0.8916
9844.	1.922	1.889	1.850		2217	0.8172	0.8468	0.8730	0.8964
					2417.	0.01/5	0.0400	0.0700	0.0059
					2474.	0.0510	0.0371	0.0004	0.9036
					2/82.	0.8520	0.8763	0.8989	0.9194
	Mixture II 20	57 mole @ nit	rogen		3057.	0.8756	0.8967	0.9171	0.9359
	Winkture II, 27	.57 more 70 m	liogen		3362.	0.9044	0.9224	0.9405	0.9574
					3982.	0.9697	0.9831	0.9960	1,009
422.2	0 8597				4592,	1.040	1.048	1.056	1.065
420.6	0.8566	• •	• •	• •	5207.	1.115	1.119	1.122	1.127
747.U 445 5	0.0000	0 9726	••	• •	5823	1,190	1.190	1,190	1.191
443.3	• •	0.0/30	0.0040	• •	6436	1.267	1.262	1.259	1,256
400.9			0.8809	• •	7047	1 3 4 3	1 335	1 3 28	1 3 2 2
484.3	0.8375	0.8622	0.8827		7047.	1.040	1.400	1 200	1 200
533.6	0.8201	0.8480	0.8705	0.8981	/000.	1.421	1.409	1.390	1.307
583.0	0.8028	0.8339	0.8589	0.8791	8282.	1.497	1.483	1.409	1,450
632.4	0.7856	0.8197	0.8470	0.8694	8854.	1.567	1.549	1.532	1.517
662.5	0.7752	0.8111	0.8400	0.8635	9182.	1.608	1.589	1.571	1.554
712.0	0.7584	0.7975	0.8284	0.8541	9660.	1.667	1.646	1.625	1.607
766 9	0 7405	0 7828	0.8162	0.8440	9844.	1.689	1.668	1.645	1.627
g16 A	0.7400	0 7600	0 8082	0 8351	9997.	1,707	1.686	1.663	1.643
010.4	0.7240	0.7070	0.7054	0.0001					
	0.7091	0.7301	0.7704	0.0200					
912'2	0.0940	0.7452	0.7834	0.01/0					
943.2	0.0852	0.738/	0.7798	0.8134		Mixture IV 7) 16 mole σ =	itrogen	
1017.	0.6668	0.7223	0.7650	0.8009		WITHLUTC IV, /			
1078.	0.6529	0.7095	0.7555	0.7930		0.0700			
1178.	0.6340	0.6928	0.7401	0.7799	488.1	0.9738		••	••
1282.	0.6203	0.6783	0.7266	0.7682	514.4		0.9784		• •
1360.	0.6137	0.6701	0.7188	0.7606	534.2	0.9717	0.9779	0.9832	
1514.	0.6079	0.6601	0.7079	0.7499	583.5	0.9699	0.9760	0.9824	0.9867
1651	0,6096	0.6575	0.7030	0.7443	632.9	0.9677	0.9748	0.9810	0.9860

TABLE I. COMPRESSIBILITY FACTORS FOR n-BUTANE-NITROGEN MIXTURES (Contd.)

TABLE II. COMPRESSIBILITY FACTORS FOR NITROGEN-BUTANE MIXTURES (Smoothed data)

Lb./Sq. Inch		z		Pressure,	Mole Fraction Butane					
Abs.	310 ⁰ F.	340 ⁰ F.	370 ⁰ F.	400 ⁰ F.	Lb./Sq. Inch	0.100	0.300	0.500	0.700	0,900
663 0	0.9664	0 9739	0 9802	0.9854			At 310 ⁰	F.		
7125	0.9004	0.9739	0.9802	0.9834						
712.3	0.9030	0.9720	0.772	0.9047	200	1.002	0.989	0.969	0.937	0.895
/0/.4	0.9030	0.9714	0.7764	0.9040	400	1.004	0.978	0.938	0.868	0.766
810.9	0.9013	0.9703	0.9777	0.9840	600	1.007	0.970	0.908	0.796	0.600
800.5	0.9598	0.9692	0.9771	0.9830	800	1.010	0.962	0.882	0.736	0.404
916.0	0.9585	0.9684	0.9763	0.9833	1000	1.014	0.958	0.858	0.674	0.356
943.6	0,9583	0.9679	0.9762	0.9831	1250	1.019	0.952	0,833	0.626	0.376
1018.	0.9565	0.9667	0.9754	0.9828	1500	1.025	0.951	0.815	0.609	0.424
1079.	0,9560	0.9660	0.9752	0.9829	1750	1.032	0.952	0.810	0.614	0.474
1178.	0.9543	0.9651	0.9749	0.9830	2000	1 040	0.956	0.811	0.635	0.522
1283.	0.9531	0.9645	0.9748	0.9834	2250	1 048	0.963	0.819	0.661	0.570
1360.	0,9522	0.9644	0.9750	0.9839	2500	1.058	0.972	0.834	0.692	0.618
1514.	0,9517	0,9648	0.9760	0.9855	2750	1.068	0.972	0.853	0.726	0.665
1651.	0.9521	0.9658	0.9776	0.9874	3000	1.000	0.000	0.875	0.720	0.000
1806.	0.9546	0.9678	0.9800	0.9903	3500	1.102	1 0 25	0.875	0.703	0.711
1931.	0.9558	0.9700	0.9827	0.9932	4000	1,102	1.023	0.923	0.040	0.800
2217.	0.9624	0.9770	0.9901	1.001	4000	1,12/	1.039	0.982	0.920	0.899
2494	0 9721	0.9864	0.9995	1.010	4500	1.153	1.097	1,040	0.996	0.992
2782	0 9849	0 9987	1 011	1 022	5000	1.181	1.139	1.096	1.0/4	1.083
3057	0.0040	1 011	1.024	1 034	5500	1.211	1.183	1.159	1.153	1.173
3362	1 017	1.029	1.024	1 049	6000	1.244	1.229	1.222	1.231	1.262
2002.	1.017	1.027	1.070	1.045	6500	1.276	1.277	1.285	1.308	1.350
3962.	1,039	1.009	1.079	1.005	7000	1.309	1.325	1.348	1.383	1.437
4592.	1.107	1.114	1.121	1,125	7500	1.342	1.372	1.411	1.460	1,522
5207.	1.159	1,103	1.10/	1.109	8000	1.376	1.421	1.473	1,535	1.609
5823.	1.213	1.215	1.216	1.216	8500	1.409	1.469	1.534	1.610	1.696
6436.	1.270	1.268	1.267	1.264	9000	1.442	1.516	1.595	1.684	1.781
7047.	1.327	1.322	1.319	1.313	9500	1.474	1.564	1.657	1.757	1.865
7666.	1.386	1.379	1,372	1.363	10000	1.508	1.610	1.718	1.827	1.948
8282.	1.445	1.436	1.426	1.414	10000	1.000	1.010	1.710	1.01/	
8854.	1.499	1.486	1.474	1.460			At 3400	F		
9182.	1,531	1.518	1,505	1,490			111 040	• •		
9660.	1.577	1.562	1.547	1.530	200	1.002	0.001	0.974	0.945	0 009
9843.	1.595	1.579	1,563	1,546	200	1.005	0.771	0.974	0.940	0,900
9997.	1.610	1.593	1.577	1.559	400	1,005	0.962	0.947	0.000	0.604
					000	1.008	0.975	0.922	0.829	0.0/8
					800	1.012	0.970	0.899	0.775	0.541
					1000	1.016	0.966	0.880	0.728	0.437
	Mixture V Q	0.64 mole 9 n	itrogen		1250	1.021	0.964	0.860	0.686	0.428
	Mixture V, 9	0.04 11010 % 1	niogen		1500	1.028	0.963	0.848	0.663	0.457
					1750	1.035	0.966	0.842	0,660	0.496
					2000	1.043	0.970	0.844	0.672	0.539
663.9	1.008				2250	1.051	0.976	0.850	0.693	0.583
713.6	1,000	1 012	1 013	••	2500	1.061	0.985	0.861	0.719	0.629
769 /	1.011	1.012	1.015	1 017	2750	1.071	0.996	0.875	0.749	0.674
917.0	1.012	1.013	1.016	1.019	3000	1.082	1.007	0.894	0.782	0.720
017.9	1.012	1,014	1.010	1.010	3500	1.104	1.035	0.939	0.853	0.810
807.4	1.012	1.015	1.017	1.019	4000	1.128	1.068	0.991	0.926	0.900
910.9	1.013	1.016	1.018	1.020	4500	1 154	1 103	1 045	0.998	0.989
944.4	1.014	1.016	1.019	1.021	5000	1 180	1 143	1 098	1 073	1 076
1019.	1.015	1,018	1.020	1.023	5500	1 200	1 184	1 158	1 148	1 161
1080.	1.016	1.019	1.022	1.024	6000	1 240	1 228	1 217	1 222	1 247
1179.	1.018	1.022	1.025	1.027	6500	1 271	1 273	1 277	1 206	1 33 2
1256.	1.021	1.024	• •	1.030	7000	1 202	1.2/0	1 227	1.270	1 4 1 6
1360.	1.023	1.026	1.030	1.032	7000	1.302	1.319	1.337	1,309	1.410
1515.	1.027	1.031	1.034	1.037	7500	1.334	1,305	1.390	1,441	1.500
1652.	1.030	1.035	1.038	1.041	8000	1.300	1.410	1.450	1.513	1.585
1806.	1.036	1.040	1.043	1.046	8500	1.399	1,450	1.510	1,584	1.000
1932.	1.040	1.044	1.047	1.051	9000	1.430	1.502	1.574	1.657	1,749
2217.	1.049	1.054	1.057	1.061	9500	1,462	1.546	1.632	1.727	1.830
2495.	1.060	1.064	1.068	1.071	10000	1.494	1.591	1.689	1.794	1.909
2782	1.072	1.076	1.080	1.082						
3057	1 084	1 088	1 091	1 094						
3362	1 098	1 101	1 104	1 107			At 3700	F.		
3082	1 1 29	1 132	1 134	1 135	200	1.003	0.002	0.079	0.052	0.010
4502	1 169	1 164	1 164	1 165	400	1 004	0.773	0.9/8	0,700	0.919
5207	1 102	1 109	1 107	1 107	±00 600	1.000	0.980	0.935	0.904	0.828
5007.	1,170	1,170	1 020	1 020	000	1.009	0.981	0.934	0.855	0.730
JOZJ. 6496	1.230	1.200	1.232	1.430	800	1.013	0.978	0.914	0.808	0.628
7047	1,2/4	1.2/1	1,20/	1,204	1000	1.018	0.975	0.899	0.770	0.541
/04/.	1.313	1.310	1.321	1,270	1250	1.024	0.974	0.884	0.732	0.482
/000.	1.334	1.330	1.340	1.333	1500	1.030	0.974	0.874	0.710	0.496
8282.	1.395	1.380	1.3/8	1.3/0	1750	1.037	0.977	0.868	0.704	0.524
8854.	1.432	1.421	1.411	1.401	2000	1.045	0.982	0.871	0.710	0.561
9182.	1.456	1.444	1,433	1,423	2250	1.054	0.989	0.876	0.725	0.600
9660.	1.488	1.475	1.463	1.452	2500	1.064	0.997	0.886	0.747	0.643
9844.	1.501	1.487	1.474	1.463	2750	1.074	1.007	0.898	0.773	0.686
9997.	1.512	1.498	1.484	1.472	3000	1.085	1.018	0.914	0.802	0.729

TABLE II. COMPRESSIBILITY FACTORS FOR NITROGEN-BUTANE MIXTURES (Contd.)

(Smoothed data)

Pressure,		Mole Fraction Butane								
Lb./Sq. Inch	0.100	0.300	0.500	0.700	0.900					
3500	1,106	1.046	0.954	0.865	0.815					
4000	1.129	1.076	1.000	0.934	0.902					
4500	1.154	1.109	1.051	1.002	0.986					
5000	1.180	1.146	1,101	1.072	1.069					
5500	1.207	1.186	1.158	1.144	1.152					
6000	1.236	1.228	1.215	1.215	1.236					
6 500	1.265	1.270	1.272	1.286	1.319					
7000	1.295	1.314	1.328	1.356	1.400					
7500	1.326	1.357	1.385	1.425	1.481					
8000	1,357	1.400	1,441	1.494	1.561					
8500	1.388	1.443	1.498	1.563	1.040					
9000	1.419	1.48/	1.555	1.032	1.721					
9500	1,450	1.529	1.010	1,700	1.000					
10000	1,481	1.572	1,005	1.700	1.0//					
		At 400 ⁰	F.							
200	1.004	0.995	0.982	0.960	0.929					
400	1.007	0.990	0.962	0.919	0.858					
600	1.011	0.986	0.945	0.878	0.773					
800	1.015	0.985	0.929	0.839	0.700					
1000	1.020	0.984	0.916	0,806	0.630					
1250	1.026	0.983	0.904	0.772	0.569					
1500	1.032	0.985	0.896	0.752	0.538					
1750	1.040	0.988	0.892	0.744	0.555					
2000	1.048	0.993	0.893	0.747	0.583					
2250	1.058	1.000	0.898	0.757	0.01/					
2500	1.067	1,009	0.908	0.774	0.600					
2/50	1.077	1.010	0.919	0.790	0.090					
3000	1 108	1.029	0.955	0.821	0.740					
4000	1 130	1.033	1 009	0.943	0.905					
4500	1 154	1 1 1 6	1.056	1 007	0.983					
5000	1 179	1.149	1,103	1.071	1.064					
5500	1.205	1.187	1.158	1.142	1,144					
6000	1.232	1.227	1.213	1.210	1,226					
6500	1,260	1.267	1.268	1.278	1.307					
7000	1.289	1.308	1.322	1.345	1.387					
7500	1.318	1.348	1.375	1.412	1,465					
8000	1.348	1.389	1.429	1,480	1,541					
8500	1.378	1.430	1.483	1.545	1.619					
9000	1.408	1.471	1.537	1.610	1.695					
9500	1.437	1.511	1.591	1.676	1,774					
10000	1.467	1.552	1.643	1.742	1.848					

In charging the nitrogen, the loading bomb was evacuated, filled with mercury from the mercury pump, and then filled with nitrogen as mercury was withdrawn from the loading bomb into the mercury pump by withdrawing the steel piston of the pump a predetermined number of turns. The volume of nitrogen in the loading bomb was determined over a range of pressures. The approximate quantity of nitrogen was then introduced into the compressibility bomb, which was held at liquid air temperatures to minimize danger of butane diffusion, by allowing nitrogen to flow into the equilibrium bomb sufficiently to cause a precalculated pressure drop. The precise quantity of nitrogen injected was determined by injecting mercury from the mercury pump into the loading bomb and recording the pump readings over the same pressure range as before injection.

The results, consisting of three series of mercury pump readings over a pressure range from 200 to 700 pounds per square inch absolute, were plotted on large graph paper. The number of moles of nitrogen charged were calculated from the volume of mercury injected into the loading bomb necessary to equalize the pressures before and after the injection. This volume was read from the

Figure 1. Compressibility factors vs. pressure for nitrogen-n-butane mixtures at 310⁰ F. at constant compositions

graphs usually at 250 pounds per square inch absolute. The compressibility factor of nitrogen at 45° C, and 250 pounds per square inch (23) was used for this calculation. The line connecting the loading bomb to the metering valve of the equilibrium bomb formed part of the volume of the loading bomb. By this method all line corrections and volume corrections due to deformation of the system with pressure are included in the measurements and ultimately cancel out. The precision of this measurement was within 0.03% with respect to pressure and within $\pm 0.02\%$ with respect to volume measurement. The molecular weight for nitrogen used in the calculations was 28.016.

Considering the precision of each variable, it may be said with considerable confidence that the over-all precision of the compressibility factors determined is within 0.5% at the lower pressures and within 1.0% at the highest pressures. The estimated precision is consistent with the maximum deviations observed on large scale cross plots of the experimental results.

EXPERIMENTAL DATA

Tabulations of the experimental values obtained in this investigation are shown in Table I where the averages of the two experimental volume values obtained at each pressure are used.

For convenience, the experimental compressibility factors have been smoothed and are summarized at even values of pressure and of mole fraction of n-butane. The smoothed data are presented in Table II. The smoothing was done by means of large scale graphs of the types illustrated in Figures 1 and 2. The compressibility factors of the pure components were obtained from published tabulations (23).

The smoothness of the large scale plots indicates the data to be self-consistent. Consistency with the published values of the compressibility factors of the pure components (23) is also apparent. The root-mean-square deviation between the experimental points and the smooth curves was less than 0.5%.

ACKNOWLEDGMENT

The purity of the gases used and some experimental calibrations of equipment were checked using some equip-

Figure 2. Compressibility factors vs. mole fraction of n-butane at constant pressures

ment and facilities normally operated by the petroleum engineering, electrical engineering, and chemical engineering departments of the college, as well as by the Texas Petroleum Research Committee. This assistance is gratefully acknowledged.

LITERATURE CITED

- (1) Amagat, E. H., Ann. chim. phys. 6 (29), 68 (1893).
- (2) Bartlett, E. P., J. Am. Chem. Soc. 49, 687 (1927).
- (3) Ibid., 49, 1955 (1927).
- (4) Bartlett, E. P., Cupples, H. L., Tremearne, T. H., Ibid., 50, 1275 (1928).
- (5) Bartlett, E. P., Hetherington, H. C., Kvalnes, H. M., Tremearne, T. H., Ibid., 52, 1374 (1930). (6) Beattie, J. A., Chem. Rev. 44, 141 (1949). (7) Beattie, J. A., J. Am. Chem. Soc. 51, 19 (1929).

- (8) Beattie, J. A., Proc. Am. Acad. Arts Sci. <u>69</u>, 389 (1934).
- (9) Beattie, J. A., Bridgeman, O. C., J. Am. Chem. Soc. 50, 3133 (1928).
- (10) Beattie, J. A., Simard, G. L., Su, G. J., Ibid., 61, 26 (1939). (11) Benedict, M., Ibid., 59, 2224 (1937)
- (12) Bloomer, O. T., Rao, K. N., Inst. Gas Technol. Research Bull.,
- No. 18 (1952). (13) Hagenbach, W. P., Comings, E. W., Ind. Eng. Chem. 45, 606 (1953).
- (14) Keyes, F. G., Proc. Am. Acad. Arts Sci. 68, 505 (1933).
- (15) Keyes, F. G., Burks, H. Q., J. Am. Chem. Soc. <u>50</u>, 1100 (1928).
 (16) Michels, A., Wouters, H., Boer, J. de, Physica <u>1</u>, 589 (1934).
- (17) Ibid., 3, 585 (1936).
- (18) Olds, R. H., Reamer, H. H., Sage, B. H., Lacey, W. N., Ind. Eng. Chem. 36, 282 (1944).
- (19) Otto, J., Michels, A., Wouters, H., Z. Physik 35, 97 (1934).
- (20) Perry, J. H., Hermann, C. V., J. Phys. Chem. 39, 1189 (1935).
- (21) Reamer, H. H., Selleck, F. T., Sage, B. H., Lacey, W. N., Ind. Eng. Chem. 44, 198 (1952).
- (22) Sage, B. H., Lacey, W. N., "Monograph on A.P.I. Research Project 37. Thermodynamic Properties of the Lighter Hydrocarbons and Nitrogen," 1st ed., American Petroleum Institute, New York, 1950.
- (23) Sage, B. H., Webster, D. C., Lacey, W. N., Ind. Eng. Chem. 29, 1188 (1937).
- (24) Smith, L. B., Taylor, R. S., Proc. Am. Acad. Arts Sci. 45, 2107 (1923)
- (25) Tsiklis, D. S., Doklady Akad. Nauk U.S.S.R. 79, 289 (1951). (26) Watson, G. M., Stevens, A. B., Evans, R. B., Hodges, D., Jr., Ind. Eng. Chem. 46, 362 (1954).
- Received for review April 5, 1955 Accepted September 18, 1955

Diffusion Coefficients in Hydrocarbon Systems Methane-n-Butane-Methane in Liquid Phase

H. H. REAMER AND B. H. SAGE California Institute of Technology, Pasadena, Calif.

here is insufficient information about the diffusion coefficients of the lighter hydrocarbons in the liquid phase for predicting the nonequilibrium behavior of petroleum during production and refining operations.

By following methods established earlier, the Fick diffusion coefficient of methane in the liquid phase of the methane-n-butane system was determined at pressures up to nearly 2000 pounds/square inch in the temperature interval between 10° and 220° F. The results are presented as a function of the state of the phase.

These measurements indicate that the composition and temperature of the liquid phase have a significant influence on the Fick diffusion coefficient. The magnitude of variations in the coefficient within the range of temperatures and compositions investigated makes it necessary to take both of these factors into account in treating many physical situations of industrial interest.

INTRODUCTION

A knowledge of the molecular transport characteristics of the lighter hydrocarbons is of value in many operations associated with the production and refining of petroleum. Little experimental work is available in this field except the early measurements of Pomeroy (9) and of Lacey and coworkers (1,4,5,7). Kirkwood (6) has assembled the basic relations of transport and these have been applied to a number of situations of engineering interest (8). Drickamer made a number of investigations of transport in liquid and gas phases at elevated pressures, of which his studies of diffusion through an interface (18, 19) are given as examples. There has been increasing interest in resistances at interfaces (2) but, in the case of hydrocarbon systems involving transfer from a liquid to a gas phase (16), it appears that this resistance is not large. Such behavior is